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The development of efficient nitrogen transfer to carbon bonds Table 1. Palladium-Catalyzed Intramolecular Diamination of
constitutes an important endeavor in both academia and industry. Alkenes

Such amination reactions have recently been greatly advanced Entry  Substrate Procedure® Product Cor}fflflon \[(ogg
through intramolecular reaction courses. Elegant examples in this 0 o
area include hydroaminatidraminohydroxylatior?;* allylic ami- N)LN/Tos Py
nation? aziridination® alkane aminatior,and aza-Wackérmeac- 1 H H A >®_/N—TOS 100 92
tions. We here describe the first realization of catalytic diamination 7|/\/\
of unfunctionalized alkenes, which relies on intramolecular reaction o o
control. I _so.Ph
The oxidative catalytic diamination of alkenes represents an 2 ” N A N 'N-SO,Ph 100 93
elusive reaction in modern oxidation catalysis. Starting with J/\/\ >Q_/
pioneering work by Barluenga in 1974nitial investigation devised 0 o
oxidation reactions that were stoichiometric in metéfs. The N)'\N,Tos J
development of an efficient catalysis is usually hampered by the 3 Q/\H A ph>©__/N_TOS 100 95
fact that diamines coordinate to almost all transition metals, which Ph B Ph
results in poisoning of a potential catalyst. A pronounced example Fh o o
is given for imidoosmium reagents, which generate stable mono- P
meric osmaimidazolidines. 4 NN A N JTTos 100 o1
Earlier attempts by us for diamination catalysis in palladium, x
again, experienced the drawback of metal deactivation by the o o
diamine product$? It became obvious that, without preventing the N)LN/Tos PN
product from metal coordination, palladium catalysis would remain 5 H H B N N-Tos 98 86
inefficient!® To this end, our initial approach started from the &
assumption thaw-alkenyl-substituted urea molecules should un- 0o o
dergo cyclization in the presence of an electrophilic palladium(Il) N)LN,Tos
catalyst, leading to an intermediary vicinal amino pallada compound. © H H B N* N=Tos 400 87
Palladium replacement through the second amino group of the Z
urea under oxidative conditions should then regenerate the o
palladium(ll) catalyst and release the diamination product as a cyclic N)LN,Tos 2
urea: 7 H H B N” “N—Tos 100 78
P
o] o] A 0
NJLH'R pgll N)L H oxidation PN i 9

ler\ N° 'N-R N)J\N/TOS
ili C N N—Tos 94 89
catalyst nucleophilic gd}_/ H H
S (catalysy n Pd' replacement n 8
X
(0]

o

Oxidative diamination following this concept was found to take I tos
place for a range of different starting materials (Table 1). In all H N A N~ 'N—Tos 100 94
cases, the appropriate choice of reoxidant was crucial, and among 7'1/& >C/>“/
various reoxidants tested, only the hypervalent iodine reagent Phl- Procedure A: 5 mol % of PA(OAE)PhI(OAC) (2.2 equiv), NMaCll
(OAc), was highly efficient. With Pd(OAg)as precatalyst and  yaoac (1 equiv). CHCh, RT, 12 h, Procedure B: 25 mol % of PA(OAC)
under mild conditions (CKCl,, room temperature), diamination and  Phi(OAc) (2.2 equiv), CHCl,, RT, 48 h. Procedure C: 10 mol % of
concomitant formation of five-, six-, and seven-membered fused Pd(OéfJ)z, PhI(OAc) (2.2 equiv), CHC,, RT, 12 h.> Determined from
rings was conveniently accomplished (Table 1). All reactions grn”;;i?al'l\;'\ﬁrzpr(;(;tr;iglngftg;(éoclgm;ogIﬁg’;’;t%'gr'g;r{;fer to isolated
reached high to full conversion, and no compounds other than the
diamination products were produced. Depending on the final ring enhanced reaction period of up to 48 h, but does not effect the
size, three different protocols were developed. Protocol A, which reaction selectivity. The diamination proceeds well for a variety of
is most suitable for pyrrolidine formation, employs a catalyst loading further substrates bearing additional substitution at the carbon
of 5 mol % and calls for a stoichiometric amount of base. The skeleton (entries 24). Formation of the seven-membered ring
latter accelerates the reaction and leads to full conversion after 12annulation was slightly slower, and the reaction proceeded best with
h (entry 1). Lowering the catalyst loading to 2 mol % requires an 10 mol % of palladium catalyst (Procedure C, entry 8). In contrast,

14586 = J. AM. CHEM. SOC. 2005, 127, 14586—14587 10.1021/ja055190y CCC: $30.25 © 2005 American Chemical Society



COMMUNICATIONS

Scheme 1. Palladium-Catalyzed Synthesis of Tricyclic

reductive conditions (LiAlH, then HCI) and furnished the free
Heterocycles 2a,b

diamine in 95% yield from nondeuteratddIn contrast to earlier

0 5 mol% Q Tos & Tos work with preformed imidoosmium oxidarit§!*or the stoichio-
N)k ~Tos Pd(OAc)s, N - N N~ metric palladiuri®@band thalliunfa diaminations, the intramolecular
©/\H/\H PhI(OAC), m + /@:)) reactions described herein afford diamines with predictable dif-
AN CHCly, RT AcO ferentiation of the nitrogen substituents.

In summary, we have described intramolecular diamination
reactions of alkenes, which afford a conceptually novel synthesis
of cyclic ureas and diamines, respectively. This process establishes
the principle of oxidative intramolecular diamination reactions,
which are truly catalytic in metal.
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